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Introduction
Authors: Globerson, Roughgarden, Sontag, Yildirim
Venue: ICML 2015
Motivation: Understand why structured prediction
inference seems easy in practice despite being NP-Hard

Structured prediction is a problem where you want to
predict a large collection of interdependent variables. 

The key point is that given
realistic data, the focus should
not be on worst-case
complexity and instead on
bringing down the hamming
error 



The problem: background/foreground prediction 

Perfect inference is intractable, yet
heuristics work, so how good are they
actually when using hamming error?

The goal is to formalize a model of the
image segmentation process, analyze

the expected Hamming error of an
efficient algorithm, and prove its error is

as small as theoretically possible

Structured prediction models like CRFs
decompose to:

(The exact MAP/marginal inference is
NP-Hard)



Hardness vs practicality

For MAP or marginal inference on 2-D grids
with pariwise interactions → NP-Hard

Real data has regularities like smooth
boundaries, local consistency, and non-
adversarial noise, which makes
inference easier

The paper formalizes this intuition through a probabilistic
generative model for observations

Worst case analysis focuses on adversarially
constructed images



The Generative Model

For each node we observe a noisy
unary observation, which can flip the
sign

Edge observations represent whether
neighbors agree

This is the main data-generative
mechanism

p is typically small, and q can
potentially be high. This matches what
we expect from real images

We’re essentially stating that with
small edge noise, and grid structure,
inference can become tractable

Related to Beyond worst-case analysis



Hamming Error 

Hamming error counts how many
labels are mismatched, which is
appropriate for pixels.

If an image has 10,000 pixels and
we mislabel 17, then the
segmentation is nearly perfect,
regardless of whether the CRF
score is exactly maximized

We don’t need the exact MAP solution

Hamming Error:

This is the entire premise of the paper, if
exact inference is hard, low error labeling
may be easy, and Hamming error is the
metric we should use



The two stage algorithm

The algorithm shared is a simple 2 stage
decoding algorithm that achieves the optimal
possible Hamming error - matching what the
intractable marginal MAP would achieve

So what algorithm finds an optimal solution effectively,
using what we know about the general data?

Edge observations are reliable
(p << 1)

Node observations are noisy
(q can be large)

The first stage gives the shape of the
segmentation (recovering the connected
geometry)

The second stage picks the correct sign



Why does Stage 1 work?
Ignore all unary/node observations, instead compute a Max-
Agreement problem (solve the labeling that agrees with the
max number of edges

We reduce the problem to Maximum-Weight Perfect Matching
which has a polynomial time solution O(n ) or O(n )3 2/3



Why does Stage 1 work? - Continued
Intuitively the edge observations encode local smoothness, and
indicate whether two nieghboring pixes should match or differ

In the real world, noise on edges is small, so we’re essentially
solving a denoising problem where we trust local pairwise relations

If a pixel was incorrectly
labeled, the edge
observations would need to
be wrong enough to support
the mistake. 



How does Stage 2 work?
After stage 1, the algorithm has nearly perfect segmentation, but
because it’s related to pairwise constraints (that only measure
relative differences) we don’t know the absolute labels.

What this essentially means is we’re unsure if the labelings of Y
are actually Y or -Y



How does Stage 2 work? - continued
Our solution is to use unary/node
observations to decide between
two labelings. 

Even if the node noise is large
(even close to 0.5) we aggregate
evidence and with majority vote
end up with the correct answer
with high probability



True Optimal vs Current 2 step algorithm

The reason why is because the optimal
solution must deal with the inherent
uncertainty introduced by the generative
model. This model can include ambiguous
data and noise, which limits the accuracy

Even if we perform exact marginal inference, the total
number of mistakes for an optimal predictor is not zero. It
is O(p  N). Meaning our algorithm is as good as any.2

A pixel becomes impossible to ddetermine
correctly when multiple noisy edges
around it are wrong at the same time. 

probability of single edge wrong → p
probability with 2 edges wrong → p  2

For N pixels → p  N2



True Optimal vs Current 2 step algorithm - Continued

The authors valdiated this theory with
synthetic 20x20 grids and tested them.

p = 0.4

They tested multiple inference strategies:
1) Exact marginals
2) LP relaxations
3) Cycle LP relaxations 

When edge noise is low, the 2 step
algorithm is virtually identical to the exact
marginal inference



Thank you!

Aditya Kanteti


